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LINEAR AND NONLINEAR THEORY OF THE DOPPLER-SHIFTED
CYCLOTRON RESONANCE MASER BASED ON
TE AND TM WAVEGUIDE MODES

I. Introduction

During the past twenty years the fast-wave Cyclotron Resonance Maser
(CRM) has been the subject of considerable interest as an efficient, high
power source of millimeter-wave radiation. The versatility of the interaction
is evidenced by the variety of device concepts which have been developed,
including gyrotron oscillators and ampifiers, gyro-klystrons, and high-
harmonic gyrotrons. In these devices the radiation frequency is close to the
cyclotron frequency or a harmonic and the beam energy is in the weakly
relativistic regime. The application of the CRM interaction to higher energy
beams and to the generation of higher frequency radiation has led to interest
in configurations based on the doppler-shifted CRM interaction. Potential
advantages of such configurations include a reduced magnetic field
requirement, larger transverse dimensions of the circuit, reduced electron
beam pitch angle, high efficiency of order 25%, and increased output power

from operation at high voltage.

The theory'ot the CRM is quite well develcped for the weakly relativistic
gyrotron regime but the relativistic doppler-shifted regime has received less
attention. The theoretical approaches used most often are the kinetic theory
based on the linearized Vlasov equation and the single particle theory. The
former .eads %c disgersion 2quations for the interaction and linear growth
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rates or thresnold currents. The latter leads to both linear and nonlinear
results for the interaction parameters. The advantage of the kinetic theory
is that it can treat more general beam distributions and usually involves
fewer a priori assumptions than the single particle method. 1In addition to
providing the saturated efficiency, the single particle theory can be reduced

to a compact set of equations useful for scaling studies.

This paper presents a comprehensive theory of the Cyclotron Resonance §

P e

Maser (CRM) interaction in a waveguide. The circular waveguide geometry was

chosen because it corresponds to the experimental geometry most often used at
N present. The kinetic theory is used to derive the dispersion relationships J
| for both TE and TM modes. The TE mode case has been investigated by several

authors, but there has been comparatively little work on the TM mode case.

-

However, the TM mode interaction competes effectively with the TE mode

interaction at relativistic electron energies. The conditions for maximum
. temporal and spatial growth rates are shown. The TM mode growth rates are \
found to vanish when the RF wave group velocity equals the beam axial velocity A

("grazing incidence").

The single particle theory is used to derive a compact set of self-

WP T iy

oA -

consistent nonlinear equations for the TE and TM mode interactions. These

A

\

equations are particularly appropriate for the Cyclotren Auto-Resonance Maser .

(CARM) regime but applicabillity extends to other regimes as well. The . ;

. A
conditions for optimum efficiency are investigated for c¢scillator and .
. amplifier configurations at the fundamental and low order harmonic g
N Q
! interactions. In the case of a beam with delta function distributions in N
posision and acmentum che single particls results in the small signal liait ;
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There s an extensive literature on the theory of Cyclotron Resonance

Masers and an exhaustive review will not be attempted. The initial
theoretical work on the radiation amplification mechanism was presented
independently by Twiss (1958), Schneider (1959) and Gaponov (1959). A single
particle theory applicable to the gyrotron configuration was given in an early
review by Gaponov et al (1967). An early application of the kinetic theory
was carried out by Ott and Manheimer (1975) for a planar configuration. A
nonlinear single particle theory for the planar configuration was developed by

Sprangle and Manheimer (1975) and further investigated by Sprangle and Drobot

(1977). Application of the kinetic theory to TE modes in cylindrical :.
waveguides was given by Chu et al (1980). The TE and TM mode interactions ;‘
have been considered for a beam with axicentered orbits by Lau (1982). A if
theory of ultrarelativistic cyelotron self-resonance masers was given by f‘
Petelin (1973). The single particle theory of CARM amplifiers and oscillators E,
'
has been reviewed by Bratman et al (1981,1983). A theory of doppler shifted :'
relativistic CRM amplifiers has been given by Ginzburg et al (1981). Doppler ::
shifted CRM oscillator configurations have been investigated by Kanavets and .
Klimov (1975) and by Vomvoridis (1982). The excitaticn of TM modes in CRM 2
oscillators has been investigated by Abubakirov (1983). An induced resonance ?
electron cyclotron (IREC) quasi-optical maser has been investigated by g
Sprangle et al (1985). Simulation studies of the CARM amplifier have been i
carried out by Lin (1984) and by Lin and Lin (1985). bt
:
The equations and results presented in this paper should provide a ”
useful starting point for developing device concepts based on the doppler- Ey
shifted cyclotron maser interaction and for interpreting cn going E;
experiments. Although aspects of the present work have teen treated {,
‘:z
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previously, this work extends previous analyses by treating TE and TM modes on
an equal footing, considering arbitrary mode indicies and beam guiding center
radius, and harmonic number. In addition, derivations of these theoretical
results are not generally available. Finally, this work provides a starting
point for cosidering more complicated syétems such as plasma filled

waveguides.
II. Dispersion Relationships from Kinetic Theory

The present analysis considers an electron beam drifting in a vacuum
waveguide with an applied axial magnetic field. Dispersion relationships for
TE and ™ modes in a circular waveguide are derived using linearized Vlasov
theory. The derivation follows the approach of Chu and Dialetis (1985) in
analyzing the gyromagnetron. The calculation assumes the electron beam
current density is sufficiently low to neglect self-fields. The calculation

is based on the linearized Vlasov equation

dr1(;.3.t) ee (BE+vxB. 65 ro(?.s.:) (II.1)

t
where fo is the unperturbed distribution function to be constructed from
constants of the motion in an applied axial magnetic field, and £ and B are
the vacuum waveguide rf flelds. The transverse components are given by

-iut}

Et(;,:) = Re{Nl(z)e(r)e (11.2a)
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R
3
B, (F,0) = Re(T(2)B(F)e t¥") (I1.2b) ,
A
&
where ; and 5 are transverse vector functions given by J
"

e=zx ¥ ¥ (II.3a)
t h.
»
, _ ¢
‘. b=V (II.3b) by
1 t X
for a TE mode, and by :i
2
. -
e = - 6tw (II.&a) -
0&
Fe
+> ~ :)'
b==-2x ﬁtw (II.4b) o
>
for a TM mode. The scalar function ¥ satisfies the Helmholtz equation i
(7% + K2y =0 (I1.5) :

t 14
and the boundary conditibn ﬁ
5
EI
¥,

n 0 (11.6) )
\l
N
on the waveguide boundary for a TE mode, or the boundary condition ; 
el
('.
=0 (11.7) Nt
[y
it the waveguide boundary for a T™™ mode. In Zq. (II.S5) %_ denotes the !
transverse wavenumber and {n 2q.(II1.5) 3/5n denotes -he ncrmal derivative. 0
d
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: The vector functicns satisfy the following orthonormality condition when

integrated over the waveguide cross section:

b ;
B [as B.. R =35 (11.8) "
x{ s S i ﬂj i.J .
K
:l h
: where E denotes either ; or 3 and 61‘1 = 1 if {=j, Gij- 0 if { = j. The axial ;
3 $
field components are given by i
a (
-; 4
b B, = Re{ikin(z)we_mt} (11.9)
K — (N
) (V]
§ i
L §
2 p
l‘
for a TE mode, and by
: °2"‘§ -tut
E_ = Re{i T(z) e } (I1.10)
_ z w
for a TM mode. The axial profile functions 7T(z) and T(z) are related -
y according to
&
: ]
N {1 dI(z) .
3 T ( A ) ; E ( II . 1 i ) 4
h 19
(] .
4 .
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for a TE mode and

igz daT(z)

(z) = - c

(II1.12)

for a TM mode. In the case of a circular waveguide, the scalar function ¥ is

given by
> ime
wmn(r) = Cmen(kmr)e (I1.13)

J where Jm is a Bessel function of the first kind and kmn = xmn/’w' Xnn is the

nth zero of Ji (prime denotes differentiation) for a TE mcde or the nth zero

of Jm for a TM mode, and Py is the waveguide wall radius. The normalization

constant is given by

[ 2 - 2 1/2 "1
Con = {;w(xmn m )] Jm(xmn)} (II.14)
for a TE mode and by
- e -1 14
Con (/v X (ko)) (II.15)

for a TM mode.
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To evaluate the RHS of EQ.(II.!), the unit vectors ;t = St/[St[

->

and 3» = et X ;z are introduced. In terms of the notation of Fig. 1, these

unit vectors satisfy the relationships

> > . >
e, = cos(@-e)er + sin(¢ e)ee (Ir.16a)

> > >
e¢ = -sin(@-e)er + cos(¢-e)ee (II.16Db)

Using these unit vectors in Eq.(I1I.1) leads to

ar, P, ar
—_— - - - iy (6-9) - - _9
I e{Ercos(o 8) + Eesgn(¢ 8) « Ym;ﬂrsin\o 8) Becos(¢ 8)1} 3,
ept aro
+ 75; {Becos(¢-9) - Brsin(¢-e} 53;

p
+e{-E sin(¢-8) + E cos(s=g) Y—; [843n(4-8) + B_cos(¢-8)]

o]
D af
t 1 0o
B oem } — — (IT.17)
z Ym° pt 3¢

for a TE mode and a similar expression for a TM mode. Using Graf's addition
theorem (Abramowitz and Stegun 1964), and considering the interaction with a

forward propagating wave (lI(z) = Hoexp(ikzz)). the expressions in brackets in

Eq.(I1.17) can be rewritten as:

i
‘

o

+ o
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T
-i(mt-kzz-me + mE) )

+ _ . - .
Ercos(o 8) + uesin(o 8) Re{nocmnkmne :

Jq(kmnro)

-
d

iq¢
Jm¢q(kman)e } (II.18a)

* - + - -1 (wt-k_z-mo+m3)
Ersin(o 9) + Eecos(o 9) Re(inocmnkmne z 2

m+q 1q¢ !
: kmanJq(kmnro)Jm+q(kman)e } (11.18b)

k

B'sin(¢-8) - B.cos(¢-8) = Re{~ = I C_ k e"‘”"“zz'°°’m§)
r ] w o mn mn

: ERCHURIE N (U BT (II.18¢)
a

ik

1
+ - + -a) = . _z -1 (wt~k_z-me+m3)
Besin(o 9) + B cos(¢ 8) = Ref e T.Con“an® z 2

@+q lao, ,
g kmnPLJq(kmnro)Jm+&kman) e 1"} (II.18d)

K
mn
B, = Rell—= M .Conmn®

K
i (wt kzz-me + mz)

1 9" aeq¥aate) € 0 (II.18e)
q

The unperturbed distribution function f, is now treated as a function of r,,

Q

P and 2= and the partial derivatives are w“ritten as

CPRAN

AP o

Y e T Tt

= -



R AT AR

- »

AP Wiy

.

0.0, 1 16, 18, To 19a)

af - - af
1 0 i i¢ -i¢ [e]
pt3¢ ZmOQe aro

where in the above equations f, = f,(p,,P.,%) on the LHS and f, = fo(pz.pt,ro)

on the RHS. Substituting Eqs.(II.18) and (II.19) into Eq.(II.17) ylelds

- n
dr1 - Re[ o C k ) e-l(wt-kzz mo~(s m)o*mi)

at w
09 ggKgnFo) 95(kgory) [lw = k;zz) ::‘: . kﬁzz :::3
- moée (9] gk o) Kgny) (W = ki::)
- %[Js_mffmnro)Jsifman) - Js_mffmnro)Jsffmn L)] Ymo } or ]}
(II.ZO)

In what follows, the the last term on the RHS of Eq.(II.20) involving

3fo/3r° will be neglected. It can be shown that for configurations which
optimize the Cyclotron Maser interaction, contributions arising from this term
are negligible. Instead this term leads to the Penjiotron interaction (Dohler
et al (1978), Vitello (1984), Zhang (1985)). EQ.(II.20) is easily solved
using the method of characteristices (Krall and Trivelpiece 1973) in which the
RHS is integrated with respect to time along the unperturbed orbits,i.e.,
2(t7) =z + v, (£7=t), o(t") = ¢ + @ (L7-t)/Y, 3(t") = ¢ + Q_(t =L}/,

For a TE mode this gives

10
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i - 7
R T ¢ 1% oy i 1wt~ k z-mo-(s-m)¢+m5)
1TE w “on'mn o sm o’Pe’Pz

— - }
w kzvz sae/Y

(11.21)

where

k p. of kzpt 3t°

TE . _ .2z )
Fan(ToPyePp) = I (kppr )i r JElw = 5o—=) ap

]
Ymo 3pz

(11.22)

+
s-m o t
and for a TM mode

- i g
-i(mt-kzz mo-(s-m)¢+m§)

) FY TM \e
£, = Rel-eeT C Kk g Fom(ForPy Py) o7 _-sa_/Y

: (11.23)

where

o} ck_  af

™ ] z z e}
. F. (r ,p,,p.) = o=——J__(k_ r )J_(k_ r ) (( - ) +
3 sm o0'"t’"z kman s=m mn o s mn L Ymoc ™ apt
\ 2

w__p of
L o]
(- o+ 2L ) 9 (II.24)

i Ymoc sne moc apz

! In Eq.(II.24) @ * kmnc and ne is the non-relativistic cyclotron frequency.

The dispersion relationships are obtained from Maxwell's Equations. The

wave equation for a TE mode in cylindrical symmetry is

J(1)

2 3
L SNl IS DI s

where the components of the perturbed current density are given by:

g

3 3
, = efd’pr v, = -efd’pr v sin(e-e) (11.26a)

11

.'b’
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e
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g U

, ) . -efd3pr1vr = -efd3pf1vtcos(o-e) (II.26b)

e

Similarly, the wave equation for a TM mode is

; (1)
) 2 aJ
: (535 - E, - gt - L) (11.27)
K (s} at o]
i where the perturbed axial current and charge densities are given by:
:
: 3 Mo _efadpr v (II.28a)
- z 12 *
[} )
[}
oM —efapt, (I1.28b) ]
[ ] ,
¥ Substituting Eq.(II.9) into Eq.(II.25), multiplying by er(kmnr)e-ime and
' integrating with respect to r and 9 leads to: X
X
-{(k_z-wt)
93 ) k2 . k2 . 2lwug e 2
2 mn 2 2 2 2,2 2
; ¢ "okmncmn 2n Y (1-m /xmn) Jm(xmn)
N
‘ (1)
2t r oJ
: W / -ime,1 3 . (1), _1 _r ;
: fodefo rdrJd (k_.rle Er ar(r‘Je ) - % -33-] :
X (1I1.29)

Integrating the RHS of Eq.(II.29) by parts and applying Graf's addition

theorem yields

- —
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2 e U,
w 2 2
=5 = Kgn " K * 3 ) frdrdeptdpcd¢dpz
¢ " r2 (1- 3 Jz(x y =9
W x 2° "m “mn
mn
1{(s~m-q)¢ - 2]
iF v e 2°J (k_r )Jd'(k_r. )
mt qQ mn o q,'mum L
(II.30)
Finally, using the relationship
rdrp,dp,d¢ds = r dr p dp déde (I1.31)

the dispersion relationship for the TE mode interaction with a given harmonic

s 1is obtained:

2
2 2e Yo

W 2 _ .2 _

=5 " Kgn~ Kz T 2 2 J‘rom”o dptptf--dp
: c "o (1 -2 33(x )m
) x2 mmn’o
b mn

Eir +PysP,)

‘ sm o'"t
] J (kmnro) s(kman)Y(m-k v, /Y) (11.32)

By a similar analysis the dispersion relationship for a TM mode is obtained:

2
2 2e Ho
w 2 2 W
— - - Kk - - _—.Ip dr dp p dp ——
ca mn 2 er.a( )m (< ] o 13 z sa K PL

wm:nno

wv
( cz 3 c)Fsm(ro,pt,pz)
dJ (k s )J (k_r) — - (I1.33)
a-pP mn L (w =k, v, sne/Y)
Writing the unperturbed distribution function in the form
f =
£y aoho(ro)go(pt’pz) (II.34)
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where °o is the number of beam electrons per unit volume, and integrating the
RHS of Eqs.(II.32) and (II.33) by parts with respect to P, and A the TE

mode equation becomes

2

2 2@ H,q0 » ®
w 2 2 0
SR N S P J’rom"oj ptdptf P,y (rg )8y Py Py
o] mr K -o
o W mn
2 2.2 2
(w -kzc ) ptHsm (w kzvz) Qsm
C T332 5o 3 53 1 (11.3%)
Yo e (w - k.v. - “e) Y(w - k_v. = “e)
o z2'2 2’2 =
Y Y
where
H = Jd% (k_r )33k _r) (I1I.36a)
sm s-é mn 0° s " mn L *

2 ' -2 PO r s
Qe = 2 Jg_{hmnFo g G )+ koo Jolkpr ) Jo 7tk r 0] (11.36D)

For a TE mode the coefficient Kmn is defined as

2

- By

Ky = (1 xz)Jm(xmn) (II.37)
mn

The TM equation becomes

2

2 2e Ued
w 2 2 o]

2 kmn kz 2 frodroptdptdpzho(ro)go(p:,pz)

c mr- K

OwW mn oY 2
_am142 (2=) 2
[(Bz Bon’ %8, 12 - k2,.2)31: i
3q, 5 sne 5 2z 7Y Ysm

(w = k_ v - —=) o
2z °

f
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-1 2 —
(8. -8.,)" s
2 ph e =
- - - w Q_} (II.38)
Y (w kzvz sne) sm
where Y
- 2
Hep*lgea™anTe’ 7= Is(KpnL) ] (II.39a)
sm " s-m mn o kman
(k P ) - (k_r.)
= s 2 s+2 mn L
Qsm - s.m(kmro)t(k PL) J (k r ) + m ]
(II.39b)
For a TM mode the coefficient Kmn is defined as
.2
Kmn - Jm (xmn) (II1.40)

£q9s.(II.35) and (II.38) can be simplified in the case of a cold, thin

annular beam. This corresponds to the delta function distribution function

h (P ) = Ab ro G(P - b) (II.41a)
1
SO(Pt-pz) = E;s:ﬁ(pt‘ pto)d(pz~ on) (II.41p)

Where Ab is the area of the beam cross section and ry is the average beam
radius. It is also convenient to introduce the plasma frequency

coezucz

W = (II.42)
P m,

N
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and the beam-waveguide fill factor

(II.43)

.whicn is usually much less than unity. Substituting Eqs.(II.41)-(II.43) into

Eqs.(II.35) and (II.38) leads to the cold beam dispersion equations for the TE

mode:

2. .2 2 _ .22 2y
(w kmnc kzc ) (w kzvzo To)

2.

2
w an
-_—L - - - - - e
g Yo [(w k ¢ ) Btoﬁsm (w k v, )(w kzvzo Y )Qsm]

(II.44)
and for the TM mode:

2 2 2
-k - - -
(w e k 2C ) (w kzvzo Y

- - -1 2 e, =
(szo Y s } (1I1.45)

Eq.(II.44) agrees with the result derived previously by Chu et al (1980)
except that their result includes additional terms in the expression for
Qsm' These terms are not included in the present analysis because the term
involving aro/aro in Eq.(II.20) has been neglected. In configurations

optimized for the cylcotron maser interaction these terms are small. However

in a related device zalled the reniotron which invelves large electron gulding

o oA \f.v‘f‘h"-.~(-s $“'.~~q‘ l'v.;rrrrr
¥)

LAY 4 e AT '-.‘*,;~r."-,' ~*
A A N Wi Ly sl AN aa R 5 ! R adis



center drifts these terms can be important (Zhang 1985). Thus the present
analysis does not apply to this device. As discussed by Chu et al (1980), tne
first term on the RHS of Eq.(II.44) is the source of the instability, while
the second i3 a stabilizing term. For relativistic beams with signifigant
transverse velocity, the second term is much smaller than the first and can be

neglected.

Comparing Eqs.(II.44) and (II.45) shows that the TE and TM mode
dispersion relations are similar in form but there are significant
differences. The TM mode instability tends to be reduced compared to the TE
mode case by two effects: First, the RHS of Eq.(II.45) involves an additional
stabilizing term proportional to (w - kzvzo' sne/Y)2 . For frequencies near
the doppler-shifted cyclotron frequency this term will be usuually be small
compared to the others and can be neglected. Secondly, the other terms on the
s;:,)z
velocity equals the wave group velocity since vg- cz/v

RHS of Eq.(I1I.45) include the factor (Bz - which vanishes when the beam

oh ° Thus, the TM mode
instability vanishes when the vacuum waveguide mode and beam mode are at

grazing incidence. This effect has been pointed out by Abubakirov (1983).

The temporal growth rates for the instability at resonance are obtained

by substituting w = w, + Aw, kz = kzo into the dispersion equations, where

(mo, ko) is the point cf intersection between the uncoupled waveguide mode

0 - kmc2 ~ ke =0 (II.46)
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and the beam mode

»
.
w =KV T 3Q,/Y, = 0 (II.47)
g
Neglecting small terms as discussed above leads to the cubic equations ;
2 2 -2,1/2 :
£ ww 8. H _ (1-8_7)
A“»3 e .. bW pmn 2t; sm ph (11.48)
Y »
‘ mn o L
- i
and :
1
2 2 = _2=1,2 _ a=2y/2 :
N Am3 - - rbw"’p “on 8to Ham (Bzo Bph) ( Bph) (11.49) .
2 '
ﬁ - -
1 2 Kmn Yo (1 Bzo/Bph) .
for the the TE and TM modes, respectively. Setting 4w = Amr + iAui, .
X Eqs.(II1.48) and (II.49) have the solutions '
b ;
2 2 -2.1/72 -
rbw mgﬁ“'mn Bto Hsm (1 %ph ) 173 -
) Aw = [ ] (II1.50)
; r 16 K Y .
mn o b
I‘v
3
2 and o
‘ L
; 2 2 = -1,2 -2.,1/2 »
£, w,. w_ 8 H_(8_~-8 3T (1 - 8.) &
A“r - bW p mn to sm 20 > ph ph ]1/3 (1I1.51) ;
g k:
16 K, Y,0 EEg) ol
ph -
P respectively, where W, is the width of the bYeam-wave interaction. The i
..
temporal growth rate is given by i
: A
) N
= \ [y
buy = 73 duy, (1I.52) :
L] .!-
(L)
‘A
()
8 .
"
y‘;.‘ - ‘ " -. . ' -_ ey LR T T Ay e ORISR S -.;.:.: ettt e Tt e :




J
Inspection of Eqs.(II.50)-(II.52) shows that for a given electron beam and N
waveguide, the growth rate is highest for a wave near cutoff and approaches :
zero as the phase velocity approaches the free space value for both TE and T™ .

modes. In addition, the growth rate vanishes at grazing incidence for TM
modes (v, = vg). '
4y
F
As pointed out by Bratman et al (1983), this effect can be explained by ;
&
considering a rest frame moving with the group velocity of the wave. In this §

' frame the mode is at cut-off (kz = 0) and {n the case of a TM mode has only a
longitudinal electric field component. If the electron beam drift velocity N
Vzo'vgr' then in this frame the electron motion is purely transverse and the :
rf fleld does no work on the electrons. This effect has also been pointed '
out by Lau (1982) for a beam with axi-centered electron orbits. 3
The spatial growth rate can be calculated by substituting -
W = W and k = k ot Ax into Egs.(II.44) and (II.45). The result can be
expressed as iy
'
1 173 Aui
Ak, = [ ] —_— (I1.53) o
i 8 82 c ‘<
g 20 iy
where 88- Bph-1' From Eqs.(II.50)-(II.53) the small signal spatial growth -
rates expressed in units of dB/m are 0
2 2 3
f w w ] 1/3 -
- bw p "mn "to 2 2 2 _ ,,1/6 >
I (dB/m) =~ 7.5 ( v &2 Jo-8KanTo) Ys KgnfL’? (Bpn 1)
m o "zo (II.54) R
[]
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for a TE mode, and

e e S s
e e

2 2
t. WS w85 2, . 2.2, J1/3
T(dB/m) = 7.5 (=2 *2~'mg 20 Jo o ®an"p’ % sr s ¥an"L’
4 Yy 3 mn L
. man o “zo
g - /
(a5 - 8,023 @ -0t
(II.55)
b Bo 273
(1 - 3 }
n‘ ph

B
s

for a TM mode. Eqs.(II.54) and (II.55) do not apply when the instability
becomes absolute such as occurs at the waveguide cutoff frequency. The onset

of absolute instability for a TE mode at the grazing incidence condition has

ELS

been analyied by Lau et al (1981).
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III. Single-Particle Theory

o ol e

In this section the Cyclotron Maser interaction {s treated in the single

G
A

)

2'8"5"a"a

particle approximation. A4 thin annular beam propagating in a c¢ircular

waveguide in the presence of an applied axial magnetic field is considered.

X The electrons follow nhelical trajectories in the applied magnetic field about
\I

ﬁ guiding centers located at a radius ry from the symmetry axis. Slow-time-
0y

scale nonlinear equations are obtained for the interaction with a given

w

.- harmonic.

Ca

v

¢

o

o

The starting point is the Lorentz force equaticn for an electron

} drifting in an applied predominantly axial magnetic field and experiencing
b perturbing rf fields:
\"

\l
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<>
X d el~+ > - 1 =+ > > ¥
‘ 3% *|7|p x B_= “le|(E+3pxB)xa (III.1) R
\
>
where Bo is the applied magnetic field 3
g
- -~ ¢
- ‘
= .
B° Bozz + Borr , Bor < Boz (II1.2) "
) £ and 8 are the rf fields, and Y is the relativistic factor 2
r
. Y = [1 + p°/(me)?]%2 (II1.3) 2
;
To obtain slow-time-scale variables, the transverse momentum is expressed in -
the form e
- i 2
Py * 1Py ‘ptexp[i(nr + 8] (III.4) 2
where Py and ¢ are the slowly varying magnitude and phase, Q is the reference %
cyclotron frequency }'
g .
lelB__(z ) ]
2 - — (III.5) o
o v,
o0 .
K
’
I
where Zy = z(to), and t = ¢ - Lo where 1 is the time the electron enters the !
interaction region. Substituting Eq.(III.4) into Eq.(III.!) and neglecting i’
) {3
3 drifts of the electron guiding center due to the rf fields, the equations of :5‘
motion can be expressed in the form e
-
- ¢
K -}
e
-,
bt
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A
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dp . p.p 3B
t i _ i(Qr + ¢)_ . -i(Qr + ¢) t7z 1 0z
dt 2 [(ax lay) € (ax* lay)e ] * ZmoY Boz 9z
(IIl.fa)
Y
de¢ 1 - i(at+9) -i(Qt+9) 1. .0
T 5 [(a, ia )e * (a,r ta e ) B 8 (1 - =)
(III.6D)
2
dp, P 9B
2 t 1 0z
i "3 2n Y B_, 3z (III.6c)

In the equations which follow the magnetic field gradient terms will be
dropped corresponding to the case of a constant applied axial magnetic
field. Substituting Eqs. (II.2)-(II.4), and (II.9)-(II.10) into Eqs.(III.6)

leads the following equations of motion for a TE mode:

dp,

£ _lel, -1(Q1+¢) £(Q1+9), ~iwt
o= = Rel- 5 -v,TI(L, ve +L_ve et o}
(III.7a)
40 1 _ -1(Qr+d) _ 1(Qr+d)
T " o, Re{1[e|[(m-v_ T)(L, ve L_ve )
2
v, k< _ Y
-2 2E gy et g - 22 (III.7)
w Y
dp, - lelvy -1(Qt+$) 1(RT+9)y_-iut
T - Rel- —— 1(L ve +L_ye Je 9%}
(I1I.7¢)
and for a T™™ mode:
ap . .
t -i(Qt+9) | {3r+d) | ~iuwt .
3 - 3 Ref-lel (X - v (L ve - _ve ye t9E} rr1i3a)

v e Du Pl




r
P

)

Y

de¢ 1 -1 (Qt+¢) 1(Qt+d), ~fwt, _ 0 )
i 55: Re{-lel(ﬂ-va)(L*we +L_ve Je } - a0 - 29) ;
1,
(III.8b) N
o
Pz 1 Rel-1]e|T[v. (L ye~t(BTo)_| Lot(aT+0) j
I 5 Re e|T(v, (L ve _vye 3
i} ~lut ‘
*2 — v]e “9%} (III.8¢c) .
where R
16,3 . 13 N
Ly=e (3; + 7 sa)w (III.9a) N
b
i8,3 _13 &
Ly=ce (5 = ae)w (I1I.90)
¢
By using the expression for the scalar function ¢y given in Eq.(II.13) ‘.
in Eqs.(III.7) and (III.8), applying Graf's Addition Theorem for Bessel
functions, and considering the interaction with the sth harmonic of the B¢
34
cyclotron frequency, the cyclotron maser equations of motion for a !
‘)
circular waveguide can be written in the form: )
| 4
R
dp 3 _(k_r ) Rt
£ . 3 man L - -iA y
g~ ~lelcy g (o rl) 5= Re{(N - v T)e | (III.10a) 3
m-s L l
k2 vz‘{ v
da e s , _ __mn't ~-iA 3
at +s-i—l-can (KanFo’ r_“s(kmnrf..)ae{i[n P sQuY nle ™7 "
t m-s L o] ,
Yo o
+ w = 30 T (III.10b) .




TETR

P aJ (k__r )
s  mn L iA
: T = - lelv Cond (kpnrl) 5 Re{Te ~"} (III.10¢) .
i} L .
A s
]
for a TE mode, and )
! ;
] ¢
t 1
. SBE = -lelc_J (kx_r ) = Jglkpr )Re{i(n -v T)e thy :
t e M pes™ 0 Ty (III.11a) :
U 8J (k ) ’ {3
. dar _ _ el %3  an"L, - -1A A
: Tt apt Cond KpnTo) . Re{(@ - v T)e } ,
‘ @3 QY -
, ‘a2 (III.11b)
‘ P, ke -1A
. 5 = - lelv,(0 - asaT =7 Con® ®anlo )-—J (kr JRe{iTe *7) Y
a-s™" (III.11c)
F;
J for a TM mode; where the phase variable has been replaced by 4
A i
] ]
A= (w-23Q)t + wt - 8¢ - (m - s)s° (I11.12)

FN ST AREN

In Eq.(III.12) Eo is the polar angle of the guiding center position.

Besides the Lorentz force equations, it is useful to consider the hy

energy equation

4 '1

3 25 = - |e| v-E (IIL.13) ‘

' N
where ¢ {3 the electron energy. Using the prescription described

above, Eq.(III1.13) can be written in the form ;

X

! L

X .

: N

~
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SRR

le|v

~

; de _ _ t Re {n(z)[L e-i(nt + ¢)+ L ei(ﬂt + ¢)]we-iwt} u
I dt 2 + - .:
(III.14) 3
Ky
for a TE mode, and as ¢
4
2 LN
de _ Je| c 4T -i(Qr + &), _1(Qr + &)
3 >+ Re {[(n v, 5 (L.e L_e ) "
c2 2 ~iwt :
-21 = vzkt'r]we } (III.15)
J
) for a TM mode. For a circular waveguide and a single harmonic, these _
' .~
: equations reduce to by
! s
) N
W_(k_r) - ;
%% = - le|v,Cpd (kpr.) 3;3 e A N (III.16)
m-s L éf
and 3
:
2 2 ,
2 k- ¢cvyY o
de ] ¢ 4T mn 2 -iA .
3t = o1V Cand (kppro) 7 Iglikgar Re{(= 7 + 1=m— Tl 2
m-s L o] 4]
(III.17) K
respectively. j
0
As pointed out by Bratman et al (1981), the relationship ;
Ly
d i
It (¢ - vphpz) =0 (II1I.18) X
M
holds in the case of the Cyclotron Maser interaction for a constant
L)
amplitude free space wave of the form :‘
\,
"
s
N
o,
25 3
(N}
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K2 (I1I.19)

i
M= noe
where M, is a constant. By substituting Eq.(II.11) into (III.10¢),
! using Eq.(III.19), and comparing with Eq.(III.16), Eq.(III.18) is
readily verified for TE modes in a waveguide. Eq.(III.18) is not in '

general true for TM waveguide modes as can be seen by subtracting vph

N times Eq.(III.11e) from Eq.(III.17) to obtain:

A _ ]
§ a . (1-622)
- at (e - VonPz) = ~lelvyCopd (kpnry) &= I kpn™L)Von 8

m-3s L 1- =22
. Av il Ae N
> © [=Z -8 _ s Jre{ir e t(Ak, 2)} (III.20) -
v Y o] o]

‘ Z0 o]

q b
:; where §  is the kinematic phase shift parameter .
k »
¢ 6 - 1 - -82 - -S—c-z- i
; o] Bph W (III.21) o
: :
« D° is the constant wave amplitude, and Bph - vph/c. Bz = vz/c. -

J £q.(III.19) shows that Eq.(III.18) holds for the TM mode interaction )

3 for a constant amplitude wave only when vp
)

It is convenient to introduce the following normalized momenta and energy:

n " % the free space limit.

Py = pt/(Yomoc) (III.22a) W

p, = pz/(Yomoc) (II1.22b)

b
-

W (Y, =Y (III.223)

>
(=)
NCAaC S ) . gy, "
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| the normalized axial coordinate ‘

L
’
.
Z = wz/c (I1I1.23)
Py
%
(:t
and to introduce the slowly varying momentum phase ,;
- - 5
8 = 4 kzz (III.24) }
¥
L%
* Transforming to spatial derivatives, the TE mode energy and phase -
y
equations for a constant amplitude wave can then be written as: :
*
:I
lel »p; ad_(k_r) %
dw t s mn L -ie
= o—— = C J(k r )= Re{n e "} (II1.25a) =
dz Yomocu pz an m_smn o] arL o] "
4
i
sle| <
de 1 [ -2 1 4
= =[5 -wl(l-899] + o ==
dZ P, © oh Yomocm pzpt .
- i
C J (k. r) g (k r)[1-wl-82 - 0 B"'z‘) -21ge{1n o~ 1€} 5
mn mn o’ r, “s''mn L ph 8 Py ) N,
o-s L (1 - =28 "
ph (III.25b) o
X
Using conservation of energy 2?
e? = mc’ + p2e? + p2c? (111.26)
.‘.
L
'
and Eq.(III.18), the momentum amplitudes can be expressed in terms of
Y
the normalized energy as follows: o
£
’
X
&
e
h
3
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| p: = [82 - 21 - 2By« (1 - 8732 ]2 (III.27a) ‘
: t to Bph ph )

. W
P, * 320 7 (I11.27v)

For interactions with non-constant amplitude waves, such as occurs in a
traveling wave amplifier, EqQ.(III.18) does not hold for either TE or TM

modes. In the case of a TE mode, a slow axial variation of the wave

Ly

amplitude affects the axial momentum according to:

. P, 3 _(k_r ) dn_ _ 4
49, _ lel _tg md (ke ) =2 T Re{1—=%"19

e (111.28) g
dz Y, Cu P, geg O 3L dz
) where q' is defined by ;
X ;
t
‘_@ rd 4 "
*=p d/Bph (1I11.29) \
X K
-
h For a slow variation in wave amplitude, it is sufficient to include W
; X
X the axial momentum correction q' in the phase equation according to:
) 9 L [6-w1-8"2) - 87 Bao) ] . slel 1 Cond (KpnFo) r
) dZ p, "0 ph Bph Y PLICT MM n-s™ ;
s - 820 -2 a - 8-5) 2 -i@ . ;
: gk r )1 -2 - w1 - 878 - ——P 5-ClRelin e 1Y)
rL s mL 8 ph B t o] 3
ph 20 by,
(- 22 ;
., . 4Ty o~10 &
- (q° - =) Re{2 H (1I1I.30)
s dz
ph
) A similar analysis leads to somewhat more complicated equations for the :
) T™ mode interaction: .
n
'
28 o,

:‘. r.q r -« l’stgﬂq't - '.‘
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dw e

dZ Yomow on mn © mn L

m-3 L

p‘
t , s
E-Z:CJ(xr)sz(kr)

-1 », 1 -2 1 o
8ph T tE (1 Bph) +—<(q B0)

ph 8 ) ar_
(c 73 PR ] Re{i'roe ey, Re{Ez—o e 18]
20 "ph
(111.31a)

od (k__r. )
de _ 1 _ =2\ _ (o _ sle] 1 s mn L
— [ao w(1-8,)-(q szo)/aph] ——C J (k_r ) =—

dz pz Yomocu pt_‘pz mn @-s mn o 3rL
dT
-1 . -ig o _~i6
[(sph q°) Re(T e "} - Re(l 5z ¢ 1] (III.31b)
dp Pl 87l- 8 (1-8-2)
z le| t s 1 “ph “zo ph
Z " " Yowp: Can’ Ko r—'Js(kman)[ * 8 4]
oo "z m-s L 8 (1 - =29 1- 20
ph ph Bph
Re {17 e '} (III.31¢)
dp,. c a7
t le] “mn s -1 . -i0 o ~-i@
= - — J (k_pr )= J (k_r )[(B -~ q°)Re{iT e ""}+Re{—=— e }]
dz Yomou pz m-sm o rL s mn L ph o) dz
(III.314d)

In the CARM regime (Bratman et al 1981) the phase velccity is close
to the speed of light and the following conditions apply:
-2

1 - Bpn << 1 (III.32a)

29




. 1 - s'ﬁ « 1 - 353 (III.32b)
by P ph
¥

Under these conditions Eq.(III.78) holds to a good approximation for T™
modes 3o that that momentum amplitudes can be calculated from
Eqs.(111.27). Using this fact and neglecting terms proportional to

(G - 8;”21)/(1 - Bz/Bph)' the equations of motion for the CARM regime

b become
el p; 3 _(k_r )
2 dw l t s ' mn L -ie

- » o———— == C_ J (k_r _— Re{ll e } (111.33a)
; dz Yomocm pz mn m-sm o] arL (o]
3
¢

do 1 -2 P20
2 €. [6 -w(t - 8 %) - —22]

dz pz o] ph Bph
X
R s|e| 820, 1 -10
5 o (1 - =22 = C_J (k_r) g (k_r )Re(il e %}
N Yomoc:m Bph pzpt mn m-sm o r, s m L o)
B (III.33d)
5 for a TE mode and

dw lej pé (8;111- Bzo) s -i@
& . o~ C_J(k_r)=J(k_r )Re{iT e "7}
) az Yomo"‘pz1_iz_9_ mn- o _gmn o r, 8 mn L e} '
3 Bon (III.34a)

‘-8
’ g0 |1 -2, 37 Py
.n' — W 6 w(’ - B ) - ]
:. dz ;:uz o] ph 8 oh |
A 3 (k__r) |
_ sle] -1_ 1 9 an’L -10
Yomou (Bph Bzo) pépé Canm_(_:mnro) ) L Re{'roe !

; (III.34b) :
h 4
b
¢
»
f ‘
:
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. P, dt o,
a9’ del v s r ) S gk r JRe(w=2elO) (I1I.3uc) |
az Yomou pz on m_smn o' r 'S mn L az j
‘f
for a TM mode, where the effect of non-constant wave amplitude is
neglected except in the phase equation. In Eq.(III.33b), q' is given
v
by Eq.(II1I.28). To further simplify the equations, the following y
variables defined by Bratman et al (1981) are introduced: "
) 8 4
u= =5 (1 - E59-) W (I1I.35a) ,
Bto ph
g
201 - =29 2
A= P, . 8 (II1.35b)
82 (1-87% ©°
to ph
b - B§° (III.35c) g
Zszoaph(1 - szo/sph) S
N
‘
2 -2
8 (v -8_) ¢
z - 2:° eph z (III.354) :
zZ0 Z0 !
(v - -B-—)
3 ph -
:
k
-
(1 - =292 .
-~ uazo Bph -
q = =3 5 (q° - Bzo) (III.3Se) .
8 (1 -8_) g
to ph »

In this notation the momentum amplitudes in the CARM regime are given

by:

| RIS

Py = 8,77 - u (I1I.36a)
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-t

p; - Bzo(1 - bu) (III.36Db)

The parameter b characterizes how strongly the axial momentum and velocity

change with change in electron energy.

In Cyclotron Maser interactions with the fundamental or low order
harmonics the electron Larmor radius i{s usually small compared to the
transverse dimensions of the waveguide mode. In this case the Bessel
function of order s - 1 occurring in the equations of motion may be
replaced by the leading term of the small argument expansion with

little loss of accuracy. In terms of the present notation

1 s-1

S= ~2\=35~ ,8-1 ,p——— s-1
S (1 iph) 2 Bto 1 u

J (k_r) =

s-1 00 L 8
227 (s-11 (1227

ph (I11.37)

The wave amplitudes are normalized according to:

Bzo 2

) F ——
(1 8 ) Cme-gkmro) S 1 - 872
4]el ph ph s-1
F_(TE) = —— { 8. 1o
s Y m <:2 83 (‘«-8-2) 2 2%s1 6zo to
) to ph (1 - -B-—)

(III.38)




for a TE mode and

=1 - 20 V. =2
ule] (3 - 8,0 " e . Bpi o
F (™M) = — T B_Z;Décmme ;kmnro) o { o Byol® T
0o to ph o0 - E_-)
ph
(I11.39)

: for a ™M mode. Using EqQs.(III.35) - (III.39), the CARM energy and

phase equations of motion may be reduced to the folilowing form:

s/2
du [1 -u] -i0
ac rp—— Re{Fse } (III.40a)
de 1 ~ s 2° 1 -ie
—--(-1_—bu)-[A-u-bq+§(1-u) Re{iFse }]
(III.40D)
\ for TE modes, and to
; /2
L L1-ul® -10
d; oo Re{iFse } (III.41a)
] s,
Lo la-u-a-Fa-w?  retre %] (III.410)

dg 1-bu

for TM modes. For non-constant wave amplitudes, the axial momentum

correction is given by

- ~y_ 2872 daF . _
%% . - fésﬁl——- Re {1 325 e 19 (1II.42)
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for TE modes and by

(1 - =22
- 8 s/2 dfF . _
%3 . — o L1mul” oo = e 18, (I1I.43)
(82 -8 ) (1-bu)
ph 20

for TM modes.

The above equations describe the motion of an electron subject to
prescribed rf fields. In a self-consistent formulation the wave
amplitudes should be calculated from the induced AC current and charge
densities. Assuming a time dependence of the form exp(-iwt), the
following wave equations are obtained from Maxwell's Equations

appropriate for TE and TM modes, respectively:
2. w2, 2 +
(V=+ (3) ) E, - iuouﬂtm (III.44a)

2 wy2 1
(VE » (3) ) Ez = i“°“sz + E; Vzpm (III.44b)
> FY

; z (
where in 2qs.(III.44) E and Ez are complex phasors and Jtm’ sz, and Py are
the fundamental Fourier components of the AC current and charge densities.
Using the prescription outlined by Flyagin et al (1977) and by Fliflet et al
(1982), the following wave equations for the z-dependent mode amplitudes I

and T can be derived:

2
(V. » k ) M= 2iugl uC_J (k_r )
4 o mn m-s 00 © Zﬂ pz

(II1.45a)
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-1 r'd
(V2ek2)T = —2- —BA 20 g (x r ) f # 2 (ke
20 m-s o °P;, T -
(1 = =—)
8 h
P (II1.450)

where the EqQ.(U45a) applies to TE modes and £q.(III.45b) applies to ™™
modes. Considering the interaction with a co-propagating wave, i.e.,

T = noexpﬁikzz), T = Toexp(ikzz), neglecting second derivatives of

no or To' introducing normalized variables, and approximating the Bessel
functions of order s, leads to the following equations for the

normalized TE wave amplitude:

dF - /—s
] 1-u ie
T inn fde TR (1I1.46)

and for the TM wave amplitude:

S

aF - fr—
s 1-u io y
— -1, 21, f de e (III.47)
14
where the normalized current parameter is given by:
Bzo 3 —
R Su lef1 8 (1= g—) s 1-872 s=1 2
Lg = - C2 52 anTo? e | — | aph Bto
mochsto m~-s (1 - Bph) 27s (1 EEE)
ph
(III.48)
for a TE mcde and boy:
. (a;; - ezo)2 .
ITM = ITE (II1.49)
20,2
(1 - 3 )
oh
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for a TM mode. Egs.(III.40), (III.42) and (III.46) form a self-

consistent set for the TE mode traveling wave interaction. Similarly,
2qs.(III.41), (III.43) and (III.47) form a self-consistent set for the

™ mode traveling wave interaction in the CARM regime. Although the
derivation has been carried out for the CARM regime, it is readily shown that

+ @),

the above equations apply in the gyrotron limit as well (b =+ o, 8ph
It is of interest to compare the results of single particle theory

with the results of the kinetic theory derived above for a tenuous beam

with § - function distributions. Expressing the wave amplitude in the

form

o i(r - A)c'

F_=F

s so (III.50)

solving the single particle equations in the small signal limit and

averaging with respect to the initial electron phase leads to:

(r - a) (r? + g_r ) - (III.51)

for a TE mode, and

h(1 - x)I _ SPI) .

(r - a) (r~ 5 5

(I11.52)

for a TM mode where

(III1.53)




When the beam current parameter is small, Eqs.(III.51) and (III.52) reduce to

(M TR

(r-ara-- (II1.54)
which - as pointed out by Bratman et al (1981) - has the same form as

the well-known Traveling-Wave Tube amplifier dispersion equation
(Gewartowski and Watson, 1965). The normalized growth rate at

resonance ( A = 0) is then given by

A 1,3
=

Iml = -E—] (III.55)

for either TE or TM modes.

By substituting unnormalized parameters into Egs.(III.55) and
(II1.62) and using the small argument approximation for the appropriate
'Bessel functions in Eqs.(II.50) - (II.51), it is readily shown that the
single particle TE and TM mode growth rates agree with the kinetic

theory results given in Eqs.(II.50) - (1I.53).

In terms of the present normalized parameters, the electronic

efficiency is given by:

Bio <alu)>
2 (1 -B—z"-) (1 - Y;1)
ph
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where u is the point where the interaction terminates and < > denotes
” averaging with respect to the initial momentum phase angle. The total time-

averaged power of a traveling-wave integrated over the waveguide cross section

V) at any point is given by:

)

Wy

4 k

:“é - Z 2

" P, 2u°mlno| (IIL.57)
% In a high Q oscillator, the RF field axial profile is essentially

3

LS determined by the cavity and not by the interaction with the beam. In

- this case the equation for the field amplitude can be neglected and the

efficiency can be found by integrating the equations of motion in a

5

J‘ prescribed cavity RF field. The required beam power i{s found by

#' applying the power balance equation

[\

?

¢ . 2!

' Vs " 3 (I1I.58)
X

e where Vo is the beam voltage, Q is the cavity Q factor neglecting wall

M

b losses, and W is the cavity stored energy which is given by

:

\ Zout Zout

M 1 2 11 2

2 Wesze, [ dzinz]| -3 o [ az|T(2)| (II1.59)
R Zin Zin

5

..

,; For a cavity defined by a uniform waveguide terminated by sections of

“.i'

) high reflectivity, the field amplitude is uniform and the stored energy

N is given by:

’.

'8 Waselln | (III.60)
P 3 ki )
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The small signal efficiency for a uniform field amplitude and the sth

harmonic is given by:

(ss) 82 s§ 12 [-(s-0)¢ - (1-bA)ue’]
ng*’ - 2 (II1.61)
5 - 322 (- v;‘>
oh
where
1 - ¢cos OK
0 s ——, (III.62a)
%
” sin¢
oo - . K2 (111.62b)
K o K
b = du, (III.62¢)
2 -2
85 (1 - 879
. gn, 9% , (1II.624)
28, (1 - -29)
ph

and L is the interaction length. The parameter 9, corresponds to the

K
parameter A defined by Chu (1978). Considering the small signal
limit, substituting Eq.(III.61) into EqQ.(III.S8), and transforming to
normalized variables leads to the following expression for the

threshold beam current for either TE or TM modes:

8
20
28 _ 8 (1 = =)
- zo ph Bph

I - (I11.63)
thr 2 -2y -, . . X
QB M (1 sph) {~(3=b)o = (1=dA)uo’]
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The Q factor for a cavity with uniform wave amplitude is given by
wl 1
Q= Zsph e (—173_13.;)- (III.64)

) where R1 and R2 are the reflection coefficients at the cavity input and

output. Substituting EqQ.(III.64) into (III.63) leads to

1 - 1 - RR,
. L™ =3 (II1.65)
2u®[=(s-0)o - (1 - bA)ue”]

IV. CALCULATIONS
A. High Q oscillator

Applications of the present theory have been considered by several

authors, therefore only selected calculations are presented here.

é In the case of a high-Q oscillator with a uniform axial magnetic

| field, the electrons interact with an approximately constant amplitude wave
and the normalized efficiency ; = <u> depends on only five parameters: the
wave amplitude Fo, the interaction length u, the detuning parameter A, the
harmonic number 8, and the parameter b which characterizes how strongly the
electron longitudinal velocity changes with a change in electron energy during
the interaction. A theory of the quasi-optical gyrotron which corresponds to
b = 0, involving four parameters was obtained by Bondeson, Manheimer and Ott
(1983). 1In the following calculations the detuning parameter is treated as an
optimization variable., Figure 2 shows the normalized efficiency ; as a

funetion of b for several values of Fo. The calculations are for s=1 and are

optimized with respect %0 u. The corresponding values of u are given {n

P A O A

%




Figure 3. Figure Y4 compares efficiency of the first four harmonics for Fo =

0.2 and optimized A and u. The optimum interaction lengths for the higher
order harmonics (not shown) are only slightly different from the results for
s=1. The actual efficiency is obtained for these results by using Eq.
(III.56). Note that the results given in Figures 2 and 3 are independent of
mode, electron energy and orbit pitch angle, and the wave frequency and phase

velocity.

The limit b = 0 corresponds to the gyrotron interaction where the
wave is close to cutoff and the wave frequency is approximately equal to the
relativisite cyclotron frequency. This limit gives the highest normalized
efficiency ( ; = 42%9) and has been extensively investigated. As is well known
the efficlency for this limit can be enhanced considerably by contouring the
axial profile of the RF field. Normalized efficiencies of order 80% have been

reported (Gaponov et al 1981).

As discussed by Bratman et al (1981,1983), the Cyclotron Auto-
Resonance Maser (CARM) regime corresponds to b = 0.5, The single-particle
efficiency is optimized (nsps 0.5) by choosing Bt' 1/Y. A large doppler

upshift - w s anc where Qc is the relativistic cyclotron frequency - and good

bunching efficiency (characterized by n ) occur when in addition

-2 -2
ph ’

obtained at b = 0.5 for Fo = 0.2, A = 0.6, and u = 8. This result was given

(1-8 °) <Y ?igure 2 shows that a maximum normalized efficiency of 36% is
previously by Bratman et al (1981). One expects that considerably higher
efficiencies should be achievable by enhancement techniques similar to those

used in gyrotrons.
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Another regime of doppler-shifted operation has been investigated by

Vomvoridis (1982) for the oscillator and by Ginzburg, Zarnitsyna, and

1
)/Bph and

). An interesting feature of this choice

Nusinovich (1981). In this case 8, = (I-Y;

2 =-2.-1 -1 =2 =2
=28 Y, (=Y ) + (1 Bph) (1=v,

Be0™%pn Yo

is both Bt and Bz can vanish simultaneously, that is, the total kinetic energy
{s available to the interaction (Vomvoridis 1982) and the single-particle
efficiency approaches 100%. In this regime b = 1 and, as shown in Figure 2,
the maximum normalized (and unnormalized) efficiency is 22%. As in the other
regimes, higher efficiencies should be achievable through enhancement

techniques.

Based on these calculations design parameters are given in Table I
for a 100 GHz CARM oscillator experiment using 600 kV beam and choosing
Bto' 1/Y°.

B. Traveling-Wave Amplifier

Calculaticns have been carried out to investigate a CARM regime
amplifier. Figure 5a shows the normalized efficiency as a function of
normalized current for b = 0.454 and F, = 0.0018. The results have been
optimized with respect to 4 and interaction length u. As pointed out by
Ginzburg, Zarnitsyna and Nusinovich (1981) the saturated efficlency and wave
amplitude are independent of the input amplitude when the input amplitude {s
sufficiently small. The results shown in Figure 5 represent this limit. The
values of saturation wave amplitude and interaction length corresponding to

Figure 5a are shown {n Figures Sb and S5¢, respectively. Except at low beam

current (Io < 0.05) which re ires smaller values, the optimum Zetuning

is 4 = 3.4,




The effect of increasing the input wave amplitude for a given beam
current is Shown in Flgure 6 for a normalized current of Eo = 0.60 and b =
0.47. The results have been cptimized with respect to 4 and y as in Figure
S. Figure 6a gives the normalized efficiency dependence on the input wave
amplitude. As noted above, the efficiency is essentially constant over a wide
rané; of input amplitude, then rises and saturates at a power gain of about 10
dB. The values of saturation wave amplitude and interaction length are shown

in Figures 6b and 6c. The optimum detuning is A = 0.4,

The design of a high power CARM amplifier operating in the TE;,
circular waveguide mode with parameters similar to the NRL VEBA free electron
laser experiment (Gold et al 1984) has been considered. The design parameters
are given in Table II. The beam energy is 1 MeV, the current is 500 Amps, the
waveguide radius is 5.4 mm, and the design operating frequency is 94 GHz.
Figure 7 compares the small signal spatial growth rates for the TE11 and ‘I'Mo1
modes as a function of wave phase velocity (and frequency) in the design
wavegulde (rw = 0.54). The growth rates were calculated using the parameters
of Table II and Eqs.(II.54) and (II.55) with small argument expansions for the
Bessel functions with argument kmn’L' The guiding center radius was taken to
be zero for the TE,; mode and as 2.1 mm for the TM°1 mode. Figure 7 shows as
discussed above that the TM;,, growth rate vanishes at the grazing incidence
condition (B;A- Bzo' 0.88). Except for this effect for TM modes, the growth
rates increase monotonically as the wave approaches the cut-off condition.
This calculation assumes the instability is convective, at some point it

becomes absolute and the calculation is invalid (see Lau et al 1981).
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The peak output power of the design is 110 MW at an electronic

R )

efficiency of 22% (<u> = 0.34). The normalized interaction length is u = 15.4

TR L

for an input power of 1 kW (Fo = 0,0019) and the total gain is 50 dB. The

small signal and nonlinear efficiencies are plotted as a function of the

W

F detuning parameter A in Figure 8. The small signal result has been scaled by .

-
§ -

a factor of 10 for clarity. Both curves were calculated numerically, the

T

small signal results correspond to an input power of 1 W and the nonlinear

3 results correspond to 1 kW. The FWHM linear and nonlinear bandwidths are 10%

P rLr

and 3%, respectively. Note that the bandwidth cannot be directly obtained
3 from Figure 8 because A 13 not proportional to frequency. The bandwidth
could be increased by decreasing the total gain. Figure 8 shows that the
*

region of maximum nonlinear gain is signifigantly detuned from the region of

maximum small signal gain.

i W Ty

As a final example a 2 THz second harmonic (s=2) CARM amplifier is

considered. Operation at high power at this frequency requires that the

WY

waveguide transverse dimension be much larger than the radiation wavelength

-

(A=0.15 mm). This can be achieved partly by operating in a higher order mode
but primarily by locating the beam line -~ waveguide mode intersection point

far above the waveguide cut-off. This ca.e represents the "auto-resonance” -

limit, however, as discussed above the rate of gain is reduced leading to a
longer interaction length and increased sensitivity to beam velocity spread.

In addition, there is an increased probability for exciting spurious modes.

A N I

Nevertheless, this design regime is of interesat due to the lack of high power

s w_»

sources at THz frequencies.

RS 7

'-'4.'1'5.!.
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The waveguide radius is chosen to be 0.5 cm which allows an annular

electron beam of radius 0.4 cm, and the operating mode is chosen to be the
TE10,1 whispering gallery mode. This corresponds to a wave frequency to cut-
off frequency ratio of w/mco- 17.8 or a wave phase velocity of 1.0016¢. For a

1.2 MeV beam interacting at the second harmonic and with Bto' Y"1

o the doppler

upshift factor is w/3Q = 10.2. The required magnetic fleld is 115 kG which is
within the state-of~the-art for superconducting solenoids. The design was
optimized for a beam current of 1 kA and assumes an input power of 1 kW. The
maximum efficiency and power were calculated to be 19% and 223 MW at an
interaction length of 134 cm. The nonlinear instantaneous bandwidth is
approximately 0.04% and the total gain is 53 dB corresponding to an average
gain rate of 0.4 dB/cm. The design parameters are summarized in Table III.
The normalized parameters for this design are b=0.518, io-o.oouu, Fo-0.0001,

Fgat=0.050, u=92, A4=0.15, and <u>=0.28.

V. Conclusions

A comprehensive theory of the Cyclotron Resonance Maser interaction in a
waveguide has been presented, including the kinetic theory and single particle
theory approaches. The interaction has been examined for both TE and T
modes, and equations have been expressed in a simple form which elucidates the
physics and facilitates calculation. The kinetic theory was used to derive
dispersion relationships for generalized beam parameters and to calculate
growth rates for a ¢old beam. The single particle theory was used to obtain
linear and nonlinear results for a cold beam. The present results confirm
chat the form of the equations of motion and the dispersion relationships is

the same fcr TS and TM modes in the CARM and gyrotron regimes. The theory
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provides the starting point for treating electiron beam self-field effects, the

use of plasma filled waveguides, and the treatment of time dependent

phenomenea.

The calculations carried out for the oscillator configuration as a
function of the parameter b apply to essentially all possible CRM
configurations including gyrotrons (b = 0), CARM's (b = 0.5), and highly
relativistic doppler shifted configurations with high pitch angle beams
(b = 1). Comparison of the la‘ter two regimes shows that normalized
efficiency is higher at b = 0.5 than at b = 1, but the single particle
efficiency is higher at b = 1 (nsp S 100%) than at b = 0.5 (nsp S 50%) . T?us

the actual efficiency is similar in the two cases (20-25%).

These calculations show that the doppler-shifted cyclotron maser
interacticn is an attractive candidate for use in nigh power, high frequency
sources. Nonlinear efficiencies of order 25% are feasible and this can be
increased by enhancement techniques. The CARM regime appears to offer an
attractive combination high interaction efficiency, large doppler upshift, and
low beam orbit pitch angle. Examples of amplifier and oscillator
configurations are given. These examples show the potential of the CARM
configuration as a high power millimeter-wave and sub-millimeter—wave source
operating at the 50-200 MW level. The present calculations d¢ not account for
beam temperature or velocity spread. CARM amplifier simulation studies by Lin
and Lin (1985) indicate that less than 1% axial velocity spread is required to
achieve high efficiency in a configuration similar to the present 94 GHz
example. The shorter interaction length of the CARM oscillator should rendger

it less sensitive %o velocity spread: the calculations of Xanavets and XKlimov
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(1975) suggest the transverse velocity spread (standard deviation) should be

less than 5%.
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Table I: 100 GHz CARM Qscillator Parameters

Electron Beam Energy
Optimum Beam Current
Threshold Current

Initial Transverse Velocity
Initial Axial Velocity
Operating Mode

Cavity Length

Cavity Wall Radius
Annular Beam Radius

Wave Phase Velocity
Cavity Output Reflectivity
Cavity Q

Magnetic Field

Interaction Efficiency

Output Power

600 kV
250 Amp
60 Amp
0.46¢c
0.76¢c
TE10, 1
4.6 cm
1.2 cm
1.1 cm
1.13¢
0.9
2200
23 kG
25 %

37 MW
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Table II: 94 GHz CARM Amplifier Parameters N
]
‘ T :
Electron Beam Energy 1 MeV
Optimum Beam Current 500 Amp :
. Initial Transverse Velocity 0.33¢ ;
Initial Axial Velocity 0.76¢ \
Operating Mode TE;, ?
Interaction Length 54,5 cm
Waveguide Wall Radius 0.54 cm :
; Solid Beam Radius 0.3 cm E
Wave Phase Velocity 1.015¢ ?
Magnetic Field 13.2 kG
Saturated Efficiency 22 % h
Qutput Power 110 MW i
. Small Signal Bandwidth (FWHM) 10 % _,
f Large Signal Bandwidth (FWHM) 3% E
3 ¥
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Electron Beam Energy
Optimum Beam Current
Initial Transverse Velocity
Initial Axial Velocity
Operating Mode
Interaction Length
Waveguide Wall Radius
Annular Beam Radius
Wave Phase Velocity
Magnetic Field
Saturated Efficiency
Qutput Power

Large Signal Bandwidth (FWHM)

Average gain rate

V. ey

Table III: 2 THz Second Harmonic CARM Amplifier Parameters

1.2 MeV
1 kA
0.3¢c
0.9¢
TE10,1
134 cm
0.5 om
0.4 cm
1.0016¢
115 kG
19 %
223 MW
0.04 ¢

0.4 dB/cm
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Figure 5: a) Normalized efficiency for first harmonic as a function of

normalized current for b = 0.454 and Fo = 0,0018. The results have been

optimized with respect to A and interaction length uw . b) Peak
normalized wave amplitude corresponding to efficiency shown in a). ¢)

Optimum interaction length corresponding to efficiency shown in a).
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The results have been optimized with respect to A and p

The optimum values of saturation wave amplitude and
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Figure 8: The small signal (dashed curve) and nonlinear (solid curve)
first harmonic efficiencies plotted as a function of the detuning
parameter A. The interaction parameters are given in Table II. The

small signal curve has been multiplied by a factor of 10 for clarity.
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